Functional expression of organic cation/carnitine transporter 2 (OCTN2/SLC22A5) in human brain capillary endothelial cell line hCMEC/D3, a human blood-brain barrier model.
نویسندگان
چکیده
The aim of this study was to examine whether organic cation/carnitine transporter 2 (OCTN2/SLC22A5) plays a role in the human blood-brain barrier (BBB) by evaluating its functional activity in human brain endothelial cells (hCMEC/D3), which are considered to be a model of the BBB. The uptake of [(3)H]L-carnitine by hCMEC/D3 cells was time-, extracellular sodium- and concentration-dependent, with a Km value of 15.7 µM. These results are consistent with the properties of OCTN2-mediated L-carnitine transport. hCMEC/D3 cells showed relatively high expression of OCTN2 mRNA, and this expression was effectively decreased at 24-72 h after lipofection of cells with OCTN2 siRNA under optimized conditions. [(3)H]L-Carnitine uptake was dramatically suppressed by silencing of the OCTN2 gene. The inhibitory effect of OCTN2 gene silencing was similar to that of an excess amount of unlabeled L-carnitine. These results indicate that OCTN2 is involved in L-carnitine transport at the human BBB.
منابع مشابه
Blood-brain barrier-specific properties of a human adult brain endothelial cell line.
Establishment of a human model of the blood-brain barrier has proven to be a difficult goal. To accomplish this, normal human brain endothelial cells were transduced by lentiviral vectors incorporating human telomerase or SV40 T antigen. Among the many stable immortalized clones obtained by sequential limiting dilution cloning of the transduced cells, one was selected for expression of normal e...
متن کاملUptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5).
BACKGROUND To date, the uptake of drugs into the human heart by transport proteins is poorly understood. A candidate protein is the organic cation transporter novel type 2 (OCTN2) (SLC22A5), physiologically acting as a sodium-dependent transport protein for carnitine. We investigated expression and localization of OCTN2 in the human heart, uptake of drugs by OCTN2, and functional coupling of OC...
متن کاملPolarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123.
P-glycoprotein (P-gp) expression at the blood-brain barrier prevents unwanted blood-borne toxins and signalling molecules from entering the brain. Primary and immortalised human brain endothelial cells (BECs) represent two suitable options for studying P-gp function in vitro. The limited supply of primary human BECs and their instability over passage number make this choice unattractive for med...
متن کاملFunctional regions of organic cation/carnitine transporter OCTN2 (SLC22A5): roles in carnitine recognition.
The organic cation/carnitine transporter OCTN2 transports carnitine in a sodium-dependent manner, whereas it transports organic cations sodium-independently. To elucidate the functional domain in OCTN2, we constructed chimeric proteins of human OCTN2 (hOCTN2) and mouse OCTN3 (mOCTN3) and introduced mutations at several amino acids conserved among human, rat and mouse OCTN2. We found that transm...
متن کاملPolarized P - glycoprotein expression by the immortalised human brain endothelial cell line , hCMEC / D 3 , restricts apical - to - basolateral permeability to rhodamine 123 Leon
P-glycoprotein (P-gp) expression at the blood-brain barrier prevents unwanted blood-borne toxins and signalling molecules from entering the brain. Primary and immortalised human brain endothelial cells (BECs) represent two suitable options for studying P-gp function in vitro. The limited supply of primary human BECs and their instability over passage number makes this choice unattractive for me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and pharmacokinetics
دوره 29 1 شماره
صفحات -
تاریخ انتشار 2014